
Abstract. This account describes the breathing-orbital
valence bond (BOVB) method, a modern valence bond
method that incorporates differential dynamic correla-
tion associated with the bond making and breaking of a
chemical event. The method aims to combine the prop-
erties of interpretability and compactness of the classical
valence bond method with good accuracy of the ener-
getics. The domain of applicability of the BOVB method
is mainly for problems that require interpretation of an
electronic wave function in terms of Lewis structures.
The method generates all the covalent and ionic Lewis
structures that are relevant to the electronic state, and
represents each of them by a single valence bond con-
figuration state function. A balanced description of the
different Lewis structures is then ensured by allowing
each configuration to have its specific set of orbitals
during the optimization process. In this framework, the
dynamic correlation associated with the breaking or
forming of a bond is viewed as the instantaneous
adaptation of the orbitals to the electron fluctuation
inherent to the bond; hence, the ‘‘breathing orbital’’
characterization. Applications of the BOVB method to a
variety of problems are described, for example, two-
electron bonds, odd-electron bonds, bonds to transition
metals, resonance energies, and diabatic surfaces. In all
these applications, the method is shown to provide
bonding energies that compare well to accurately
calculated or experimental values, despite the extreme
compactness of the wave functions.
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1 Introduction

Despite the dominance of the molecular orbital (MO)
method for computational purposes, much of chemical
wisdom is still couched in terms of valence bond (VB)
concepts, such as local bonds and lone pairs, which are
key elements of the Lewis concept of the chemical bond
[1, 2]. Thus, a chemical bond involves spin-pairing of
electrons, which occupy valence atomic orbitals (AOs)
or hybrids of adjacent atoms that are bonded in the
Lewis structure. In this manner, each term of a VB wave
function corresponds to a specific chemical formula or
Lewis structure, and has thereby a clear qualitative
significance. As such, VB theory and its simplest variant,
resonance theory [3], have generated fundamental con-
cepts such as hybridization, covalency, ionicity, reso-
nance hybrid species, resonance stabilization, and so on.
These concepts served chemists extremely well and
enabled them to rationalize and predict reaction mech-
anisms or molecular properties by simply writing down
VB structures on a back of an envelope.

Alongside this historical significance, contemporary
VB theory offers a quantitative means for studying a
variety of problems [4] at the level of a unique chemical
insight that is not available by standard ab initio
MO-based computations. This unique insight originates
from the ability of VB theory to construct diabatic
states, which represent electronic structures that are as
invariant as possible throughout a reaction coordinate.
The diabatic states so generated apply to numerous
problems, such as

1. Chemical dynamics, in cases where the Born–Oppen-
heimer approximation breaks down.

2. Chemical reactivity, with the Shaik–Pross diagrams,
in which a reaction barrier originates in the avoided
crossing of two diabatic state curves, one representing
the generalized bonding scheme of the reactants and
the other that of the products [5, 6].
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3. Photochemistry, with harpooning and charge-transfer
mechanisms [7], and photochemical funnels [8].

4. Fundamental principles of organic chemistry, for
example, the role of electronic delocalization as a
stabilizing factor [9, 10, 11, 12].

5. Solvation, with theoretical models treating the solva-
tion effects separately on covalent and ionic compo-
nents of a bond [13].

For such applications, it is not only important to be
able to interpret the wave function in terms of chemical
structural formulas (Lewis structures), but also to esti-
mate the energy of each of these individual Lewis struc-
tures and their variations along a reaction coordinate
prior to their interaction to form the adiabatic states.
This requires computational VB methods that combine
quantitative rigor and conceptual clarity. We can define
therefore the following wish list for a VB method:

1. Unambiguous interpretability of the wave function in
terms of Lewis structures.

2. Compactness of the wave function.
3. Ability to calculate diabatic as well as adiabatic states.
4. Accounting for dynamic correlation to give reasonable

accuracy (say a few kilocalories per mole) of the
calculated energetics.

5. Consistency of the accuracy at all points of the surfaces
calculated.

The latter two points on the wish list require the
method to be able to describe the elementary events of a
reaction, i.e., bond-breaking or bond-forming, in a
faithful manner. Thus, a crucial test for the method will
be its ability to reproduce dissociation curves, for two-
electron as well as odd-electron bonds. This account
focuses on a VB methodology, the so-called breathing
orbital VB (BOVB) method, which was recently devel-
oped [14, 15, 16, 17] with these essential features in mind,
and which has been successfully applied to a variety of
chemical problems [18–24].

2 VB theory and electron correlation

The term ‘‘electron correlation energy’’ is very simply
defined in the MO framework. It is the difference
between the exact nonrelativistic energy and the energy
provided by the simplest MO wave function, the
monodeterminantal Hartree–Fock wave function. With-
in this definition, it is customary to distinguish between
nondynamic and dynamic electron correlation.

2.1 Coulomb (static) electron correlation

Coulomb electron correlation is the part of the total
correlation energy that is included in a complete-active-
space self-consistent field (CASSCF) calculation, which
correlates the valence electrons in valence orbitals. In
VB terms, the Coulomb correlation ensures a correct
balance between the ionic and covalent components of
the wave function for a given electronic system [25]. The
dynamic correlation is just what is still missing to get the
exact nonrelativistic wave function.

The essential part of Coulomb correlation energy for
polyatomic molecules is the ‘‘ left–right electron corre-
lation’’, which is concerned with the ionic–covalent
balance within a given two-electron bond. Let us there-
fore discuss this type of correlation in the case of a
homonuclear single bond that links together two AOs,
va and vb, of some identical atoms A and B.

A VB wave function that takes care of left–right
correlation is YVB in Eq. (1), in which the coefficients k
and l are optimized to minimize the total molecular
energy. Here the first term in parentheses is purely
covalent, and is often called the Heitler–London (HL)
wave function (YHL) by analogy with the first historical
VB calculation of H2 by Heitler and London [26] in
1927. The second term is the ionic component of the
bond, which is present in all bonds.

WVB ¼ k va�vvbj j þ vb�vvaj jð Þ þ l va�vvaj j þ vb�vvbj jð Þ ð1Þ

This description of the A–B bond corresponds to the
classical VB method if va and vb are just the orbitals of
the free atoms and corresponds to the VBSCF method
[27] if both coefficients k and l as well as the orbitals are
simultaneously optimized in a flexible basis set. This
method can be readily extended to polyatomic mole-
cules, simply by generating a complete and linearly in-
dependent set of covalent and ionic structures for the
molecule at hand. As this set of VB structures generates
the same configurational space as the set of valence
CASSCF configurations in the MO framework, such
a VB calculation takes into account all the Coulomb
correlation of the molecule. Thus, a complete VBSCF
calculation that deals with pure AOs is conceptually
equivalent to a valence CASSCF calculation, although
this equivalence is only approximate in flexible basis sets,
the VBSCF energy being slightly higher. Now a severe
inconvenience of describing each bond of a polyatomic
molecule by one covalent and two ionic components is
that the number of VB structures grows exponentially
with the size of the molecule. In light of this difficulty,
Coulson and Fischer [28] proposed an elegant way to
incorporate left–right correlation into a single and for-
mally covalent VB structure of the HL type. They used
slightly delocalized orbitals as exemplified for the A–B
bond in Eq. (2), dropping the normalization constants.

WCF ¼ ul �uurj j þ ur �uulj j; ul ¼ va þ evb; ur ¼ vb þ eva ð2Þ

Here each orbital, ul or ur, is mainly localized on a
single center but involves a small tail on the other center,
so the expansion of the Coulson–Fischer (CF) wave
function YCF (Eq. 3) in AO determinants is in fact
equivalent to YVB in Eq. (1), provided the coefficient e is
properly optimized.

WCF ¼ ð1 þ e2Þð va �vvbj j þ vb �vvaj jÞ þ 2eð va �vvaj j þ vb �vvbj jÞ
ð3Þ

In the generalized VB (GVB) method [29, 30], each
bond in a polyatomic molecule is described in the CF
way, i.e., the bond is considered as a pair of nonor-
thogonal and spin-coupled orbitals, as in the HL wave
function. In the early version of this method [30], all
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possible spin couplings were allowed for a unique set of
spatial orbitals, and no orthogonality restrictions were
imposed on the orbitals. For the sake of computational
efficiency, the different GVB pairs were later constrained
to be mutually orthogonal, without much loss of nu-
merical accuracy. The resulting GVB wave function that
formally displays purely covalent bonds implicitly con-
tains ionic structures, necessary for a reasonable de-
scription of the bonds. The most popular version of
GVB theory is the so-called ‘‘perfect pairing’’ approxi-
mation, which considers a single spin-coupling scheme
which reflects the way AOs are bonded together in the
Lewis structure. A method that relies on the same phi-
losophy is the spin-coupled (SC) theory [31]; however,
like the early GVB versions, this method removes any
orthogonality restrictions and considers all possible
spin-coupling schemes between the singly occupied
orbitals. The lone pairs can be treated either as doubly
occupied localized orbitals, or as pairs of strongly
overlapping singly occupied orbitals.

The GVB and SC methods take care of the left–right
correlation for each bond of a polyatomic molecule;
however, these methods do not include the totality of the
Coulomb correlation since the various local ionic situ-
ations are not interconnected with these methods. For
example, the two ionic situations 1 and 2 (Scheme 1) are
expected to have different weights, the weight of 2 being
more important than 1, but this feature is not taken into
account in the wave functions based on CF orbitals. To
include all nondynamic electron correlation, one should
abandon the CF idea and go back to VB structures
constructed with strictly localized AOs, without any
delocalization tails, and generate all possible VB struc-
tures, allowing their coefficients and orbitals to be
optimized simultaneously.

Technically, the simultaneous optimization of orbi-
tals and coefficients for a multistructure VB wave func-
tion can be done with the VBSCF method due to van
Lenthe and Balint-Kurti and Benneyworth [27] and
Verbeek and coworkers [32, 33]. The VBSCF method
has the same format as the classical VB method with the
important difference that while the classical VB method
uses orbitals that are optimized for the separate atoms,
the VBSCF method uses a variational optimization

of the AOs in the molecular wave function. In this
manner the AOs adapt themselves to the molecular
environment with a resulting significant improvement in
the total energy and other computed properties.

2.2 Dynamic electron correlation

The importance of left–right correlation for the descrip-
tion of the bond is best appreciated in the case of the
F2 molecule. Here the experimental bonding energy
is 38 kcal/mol, while the Hartree–Fock bond energy
is negative, –36 kcal/mol [34], i.e., the energy of the
molecule is found to be higher than that of the separated
fluorine atoms. The situation improves considerably at
the GVB, VBSCF, or CASSCF level (Tables 1, 2), which
are roughly equivalent for this molecule. However,
despite the improvement, the calculated bonding energy
is still disappointingly small, reaching only half the full
configuration interaction (CI) estimate with the same
basis set. Thus, while GVB and VBSCF (and CASSCF)
calculations take care of the Coulomb correlation, they
do not treat the dynamic correlation which is accounted
for in the extensive CI calculation. The qualitative defect
of the GVB, VBSCF, or CASSCF wave function of F2

appears instantly once the wave function is expanded in
terms of covalent and ionic VB structures with strictly
localized AOs, in a manner similar to Eq. (3), and as
pictorially represented in Scheme 2.

In the GVB and VBSCF wave functions the orbitals
and coefficients of the covalent and ionic structures are
optimized. However, the AOs are nearly identical for the
covalent and ionic structures, i.e., the orbitals are
adapted to the mean field of the three structures. In fact,
all the orbitals are optimized for an average neutral
situation, which is about correct for the covalent struc-
ture but disfavors the ionic ones. Now common sense
suggests that the molecular energy would be further
lowered if the AOs were allowed to assume different sizes
and shapes, depending on whether they belong to the
neutral atoms in the covalent structure or to the ionic
atoms in the ionic structures. One can therefore antici-
pate that the mean-field constraint of the GVB and
VBSCF methods will underestimate the weight of the
ionic structures, leading to an inaccurate description of
the bond. Relaxing this constraint during the orbital
optimization should allow each VB structure to have its
own specific set of orbitals, different from one structure
to the other, and would improve the description of the
bond without increasing the number of VB structures. In
such a wave function, the orbitals can be viewed as in-
stantaneously following the charge fluctuation by rear-
ranging in size and shape. Such orbitals were dubbed
‘‘breathing orbitals’’ and the method itself was named theScheme 1

Scheme 2
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‘‘breathing-orbital VB’’ (BOVB) method. Our working
hypothesis is that the improvement brought by this BO
effect closely corresponds to the contribution of dynamic
correlation to the formation of the bond. Thus, in the
BOVB picture the dynamic correlation derives from the
wave property of the electron that enables the electronic
density to respond instantaneously to the varying local
charges in the VB structures.

3 The BOVB method

The idea of using different orbitals for different VB
structures is not new, and has been successfully applied to
molecules qualitatively represented as a pair of resonating
degenerate Lewis structures, for example, formyloxyl
radical, carboxylate anions, etc. [35, 36, 37]. In this
context, the nonorthogonal CI of Jackels and Davidson
for the formyloxyl radical [35], the RGVB method of
Voter and Goddard [36], and the generalized multistruc-
tural wave function of Nascimento [37] should be
mentioned. Murphy and Messmer [38] developed a novel
GVB method in which the local orbitals are allowed to be
different for different spin-couplings, an improvement
which makes the wave function attain nearly all of the
correlation energy of a corresponding CASSCF calcula-
tion. What we advocate here is just the systematic
application of the principle of different orbitals for
different VB structures to the description of the chemical
bonds, the latter being described with explicit inclusion of
their covalent and ionic components.

3.1 General principles

The general philosophy is that the representation of an
electronic state in terms of Lewis structures is not just a
model but rather an intimate picture of the true nature
of the chemical interactions. The picture needs only a
rigorous quantum mechanical formulation to become a
quantitative computational method. The procedure that
derives from this philosophy and underlies the BOVB
method is straightforward. It consists of generating all
the Lewis structures that are necessary to qualitatively
describe a reacting system in VB terms and providing the
corresponding VB structures with the best possible
orbitals to minimize the energy of the final multistruc-
ture state. This kind of ‘‘absolute’’ optimization of the
orbitals is attained by getting rid of the previously
discussed mean-field constraint (e.g., of GVB, VBSCF,
etc.), and allowing different orbitals for different VB
structures. The method is thus grounded on the basic
postulate that if all relevant Lewis structures of an
electronic state are generated and if these are described
in a balanced way by a wave function, then this wave

function should accurately reproduce the energetics of
this electronic state throughout a reaction coordinate.

The requirement that all Lewis structures be gener-
ated requires in turn that both covalent and ionic com-
ponents of the chemical bonds have to be considered. As
the number of VB structures grows exponentially with
the number of electrons, it is apparent that the BOVB
method will not be applied to large systems of electrons,
but rather to that small part of a molecular system that
effectively ‘‘participates’’ in a reaction, the so-called
‘‘active subsystem’’. The rest of the electrons are con-
sidered as spectators that are treated at the MO level,
but their MOs are allowed to undergo optimization
during the BOVB procedure.

3.2 Choice of an active subsystem

Consider a typical SN2 reaction as an example (Eq. 4).
The reaction consists of the breaking of a C–F bond
followed by the formation of a new C–Cl bond.

Cl� þ CH3�F ! ½ClACH3AF	�

! Cl � CH3þF� ð4Þ
The four electrons and three orbitals involved in the

C–F bond and in the attacking lone pair of Cl) will
constitute the core of the reaction, and will form the
‘‘active’’ system. Three lone pairs of fluorine, three other
lone pairs of chlorine, and three C–H bonds of carbon
will keep their status unchanged during the reaction and
will form the ‘‘inactive’’ system. Generally, the active
system will be composed of those orbitals and elec-
trons that undergo bond-breaking or bond-forming in a
reaction. While the inactive system will be treated as
localized doubly occupied MOs at the MO level, the
active system will, in contrast, be subject to a detailed
VB treatment involving the complete set of chemically
relevant Lewis structures.

In this example, this would mean consideration of the
set of the six VB structures (3–8) that one can construct
for a system of four electrons in three orbitals
(Scheme 3).

The active electrons are thus explicitly correlated (by
Coulomb correlation), while the inactive electrons are
not. One expects that the lack of Coulomb correlation in
the inactive subsystem will result in a constant error
throughout the potential surface and therefore just
uniformly shift the calculated energies relative to the
fully correlated surface. Note that in this model all the
occupied orbitals, active and inactive, are affected by
the progress of the reaction, and thereby rearrange and
adapt themselves to the local charges of the VB struc-
tures and to their mixing at all points of the reaction
coordinate.

Scheme 3
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The previous definitions of active/inactive subsystems
are of course not restricted to the study of reactions
but can be generalized to all species whose qualitative
description can be made in terms of resonating Lewis
structures, such as conjugated molecules, mixed valence
compounds, etc.

3.3 VB formulation of the Lewis structures

After the choice of the relevant Lewis structures
has been made, the following step involves their
quantum mechanical formulation. Each Lewis structure
corresponds to a set of AOs which are singly or doubly
occupied, as illustrated in 9–11 for the F2 molecule
(Scheme 4).

Each such Lewis structure is represented by a single
VB spin eigenfunction (Y9)Y11), called a ‘‘VB struc-
ture’’. These VB structures are linear combinations of
Slater determinants involving the same occupied AOs as
the corresponding Lewis structures, as in Eqs. (5), (6),
and (7):

W9 ¼ . . .ui . . . Ln
�RRnj j þ . . .ui . . .Rn

�LLnj j ; ð5Þ

W10 ¼ . . .u0
i . . . La

�LLa

�
�

�
� ; ð6Þ

W11 ¼ . . .u00
i . . .Ra

�RRa

�
�

�
� : ð7Þ

Here u, u¢, and u¢¢ represent the set of inactive orbitals
for each VB structure, L and R are the active orbitals of
the left and right fragments, respectively, and the sub-
scripts n and a stand for neutral and anionic fragments,
respectively (recall that the cationic fragments have only
inactive orbitals and no active ones). Note that the in-
active orbitals ui, ui

0 and ui
00 of Y9)Y11 are all different

from each other, as are the active orbitals Ln, La, or Rn,
Ra. These differences are pictorially represented in 9–11
by drawing orbitals with different sizes depending on the
identity of the species as neutral, cationic, or anionic,
but the orbitals may also differ in shape (e.g., different
angular properties owing to rehybridization).

An important feature of the BOVB method is that the
active orbitals are chosen to be strictly localized on a
single atom or fragment, without any delocalization
tails. If this were not the case, a so-called ‘‘covalent’’
structure, defined with slightly delocalized orbitals like,
for example, CF orbitals, would implicitly contain some
ionic contributions, which would make the interpreta-
tion of the wave function questionable [39]. The use of
pure AOs is therefore a way to ensure unambiguous
correspondence between the concept of the Lewis
structural scheme and its mathematical formulation.

Another reason for the choice of local orbitals is that the
BO effect is effective only when the charge fluctuation is
faithfully represented in the VB structures. This means
that the ionic structures are really ionic and the covalent
ones are really covalent. When the orbitals are not local,
a formally ionic structure is in fact contaminated by
covalent ones and can at best reflect some damped
charge fluctuation. Moreover, since one uses the full set
of the VB structures, allowing the orbitals to delocalize
would create artificial redundancy in the VB structure
set. It follows therefore that the choice of purely local-
ized active orbitals is in fact not a restriction on the
orbital optimization, but rather a way to ensure a correct
procedure.

On the other hand, there is no conceptual problem in
letting the inactive orbitals be delocalized. For example,
either the local px lone pairs of F2 (in 9–11) or their
doubly occupied bonding and antibonding combinations
represent two lone pairs facing each other. Thus, quali-
tatively both representations keep the same physical
picture of this four-electron interaction. However, in
flexible basis sets, the delocalized representation has
more degrees of freedom over the localized one, since the
building block AOs of the bonding and antibonding
combinations can be different, thereby leading to a
slightly better description of the four electron interac-
tions. Therefore, the delocalization of inactive orbitals
will be used as one of the possible options in the BOVB
method. Of course, using localized active orbitals and
delocalized inactive ones is valid only if inactive/active
orbital rotations are not allowed. Practical means to
avoid such spurious rotations are described in Sect. 4.5.

3.4 BOVB levels

Several theoretical levels are conceivable within the BOVB
framework. Initially, the inactive orbitals may or may not
be allowed to delocalize over the whole molecule (vide
supra). To distinguish the two options, a calculation with
localized inactive orbitals will be labeled L, as opposed to
the label D that will characterize delocalized inactive
orbitals. The usefulness and physical meaning of this
option will be discussed using examples.

Another optional improvement concerns the de-
scription of the ionic VB structures. At the simplest level,
the active ionic orbital is just a unique doubly occupied
orbital as in 10 or 11; however, this description can be
improved by taking care of the radial correlation (also
called ‘‘in–out’’ correlation) of the two active electrons,
and this can be achieved most simply by splitting the
active orbital into a pair of singly occupied orbitals

Scheme 4
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accommodating a spin-pair, much as in GVB theory.
This is represented pictorially in 12 and 13 (Scheme 5),
which improve the descriptions of 10 and 11.

This higher level will be referred to as S (for split),
while the simpler unsplit level will carry no special label.
Combining the two optional improvements, the BOVB
calculations can be performed at the L, SL, D, or SD
levels.1 These levels were tested on bond energies and/or
dissociation curves of classical test cases, representative
of two-electron and odd-electron bonds.

4 Computational tests

4.1 The difluorine molecule

The dissociation of difluorine is a demanding test case
used traditionally to benchmark new computational
methods. In this regard, the complete failure of the
Hartree–Fock method to account for the F2 bond has
already been mentioned. The calculated energies of F2 at
a fixed distance of 1.43 Å, relative to the separated
atoms, are displayed in Table 1. Note that at infinite
distance, the ionic structures vanish from the wave
function that is described by a pair of singlet-coupled
neutral atoms and corresponds to the Hartree–Fock
situation of the separated atoms.

Since extensive basis sets are required to reproduce
properties of this molecule, and we are using only 6-31G*,
we cannot expect to reproduce the experimental bond
energy. Therefore the best bonding energy is taken as the
estimated full CI value, which is in the region of 30 kcal/
mol. The classical VB level, referred to in Table 1 as
iteration 0, is a simple nonorthogonal CI between one
covalent and two ionic structures, using the pure AOs of
fluorine, optimized for the free atoms. As can be seen, the
bond energy at this latter level is extremely poor (though
exceedingly better than Hartree–Fock) and still negative.
The GVB level, which nearly corresponds to the same VB
calculations but with optimized orbitals (all VB structures
sharing the same set of orbitals), is much better but still far
from quantitative. However, as soon as the orbitals are
allowed to adapt themselves to the individual VB struc-
tures (BOVB levels in entries 1–5), the bond energy in-
creases and converges rapidly to a value close to the full CI
estimation. Thus, the BO effect just corresponds to that
increment of the dynamic electron correlation that van-
ishes as the bond is broken. This provides a clear picture
for the physical meaning of the dynamic correlation
associated with the single bond, which is nothing but
the wave-like quality of the electron manifested as the
instantaneous adaptation of the orbitals to the charge
fluctuation of the two bonding electrons.

Table 1 displays also the weights of the covalent and
ionic structures, as calculated by means of the popular
Chirgwin–Coulson formula, thus emphasizing the
imbalanced ionic/covalent ratio that characterizes low
levels of calculation.2 The classical VB calculation, with
orbitals taken from the free atoms, greatly disfavors the
ionic structures with a weight that is much too small when
compared with the best calculation, entry 5. The GVB
wave function (projected on the basis of VB functions
defined with pure AOs), with its orbitals optimized for the
bonded molecule, is a little better, but it still suffers from
the mean-field constraint. Now, when full freedom is given
to the ionic structures to have their own orbitals, different
from the covalent ones, the ionic weights gradually

Scheme 5

Table 1. Localized breathing-
orbital valence bond (L-BOVB)
calculation on the F2 molecule
at a fixed interatomic distance of
1.43 Å. The 6-31G* basis set
was used. See Ref. [14] for more
details

Iteration Energy
(au)a

De

(kcal/mol)
Coefficients (weights)

Covalent 9 Ionic 10 or 11

0b )198.71314 )4.6 0.840 (0.813) 0.194 (0.094)
1 )198.75952 24.6 0.772 (0.731) 0.249 (0.134)
2 )198.76494 27.9 0.754 (0.712) 0.258 (0.144)
3 )198.76572 28.4 0.751 (0.709) 0.260 (0.246)
4 )198.76600 28.5 0.752 (0.710) 0.259 (0.145)
5 )198.76608 28.6 0.750 (0.707) 0.261 (0.146)
Projected generalized
valence bondc

)198.74554 15.7 (0.768) (0.116)

a The Hartree–Fock bond energy is )33.4 kcal/mol at this interatomic distance
b Iterations 1–5 are BOVB calculations
c The valence bond weights are calculated after projecting the generalized valence bond wave function
onto a basis of pure valence bond functions defined with strictly localized atomic orbitals

1The L, SL, and SD levels were referred to as levels I, II, and III in
Ref. [13]

2The weight Wn of a VB structure Vn is calculated as
Wn ¼

P

m
CnCnSnm, where Cn and Cm are the coefficients of Vn and

Vm in the wave function and Snm is their overlap
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increase after each iteration. This clearly supports the
previously stated intuitive proposal that the lack of dy-
namic correlation, which characterizes the classical VB,
VBSCF, GVB, SC, or valence–CASSCF levels, results in
an imbalance in the treatment of covalent versus ionic
situations, and disfavors the latter structures.

The best calculation [14] corresponds to the simplest
level of the BOVB method, referred to as L-BOVB. All
orbitals, active and inactive, are strictly local, and the
ionic structures are of closed-shell type, as represented in
10 and 11. However the theory can be further improved,
and the corresponding levels are displayed in Table 2. It
appears that the L-BOVB/6-31+G* level, yields a fair
bonding energy, but an equilibrium distance that is
rather too long compared to sophisticated estimations.
This is the sign of an incomplete description of the bond.
Indeed this simpler level does not fully account for the
correlation of the active electrons, which are located in
doubly occupied orbitals in the closed-shell ionic struc-
tures 10 and 11. Splitting the active orbitals of the ionic
structures as in 12 and 13, i.e., the SL-BOVB level,
remedies the deficiency. The corresponding SL-BOVB
level displays an increased bonding energy and a short-
ened bond length compared to L-BOVB in Table 2.

The optimized equilibrium distance is still too long,
however, and now the interactions between inactive
electrons have to be considered. In the F2 case, the
inactive electrons involve the three lone pairs on each
atom, facing each other. While their local AO or delo-
calized MO descriptions would be strictly equivalent in a
minimal basis set, this is not the situation in more flex-
ible basis sets. In a flexible basis set, the delocalized MO
description implicitly allows some charge transfer from
one lone pair of an atom to some outer-valence orbitals
of the other atom [43]. Most of this charge transfer
corresponds to some back-donation in the ionic struc-
tures, i.e., the fragment F) that has an electron excess in
its r orbitals donates back some charge to the F+

fragment through its p orbitals. Indeed, allowing the p
lone pairs to delocalize (SD-BOVB entries in Table 2)
results in a significantly shortened calculated bond
length which is now in the expected range.

For the sake of comparison, Table 2 also displays
some full CI estimations by Laidig, et al. [40], along with
SD-BOVB calculations using the same basis set. The
BOVB bonding distance appears perfectly correct, and
the bonding energy seems to be within an acceptable
margin of the full CI.

4.2 The hydrogen fluoride molecule

Hydrogen fluoride is another classical test case, repre-
senting a typical polar bond between two atoms of very
different electronegativities. As such, the molecule is
expected to possess one ionic structure, F)H+, that is
nearly as important as the covalent one. Thus, any
deficiency in the description of ionic structures should
result in significant error in the bonding energy and
dissociation curve. Another distinctive feature of the
F–H bond is its very high experimental bonding energy
of 141 kcal/mol. With such strength of the bonding,

one may wonder if the inactive electrons play the role
assumed by the basic hypothesis of the BOVB method.
For these two reasons, hydrogen fluoride is a challenging
case, especially when the BOVB method can be assessed
vis-à-vis benchmark full CI calculations that are avail-
able for the bond energy and the full dissociation curve.

The F+H) structure is expected to be very minor but
is nevertheless added for completeness. The optimal
bond lengths and bonding energies calculated at various
theoretical levels, in the 6-31+G** basis set and in an
additional basis set comparable in quality to the one
used by Bauschlicher and Taylor [44], are displayed
in Table 3. Dynamic electron correlation effects appear
once again to be an important component of the
bonding energy, as evidenced by the GVB/6-31+G**
calculation yielding a value of only 113 kcal/mol, quite
far from the experimental value. However the simple
L-BOVB level also proves to be insufficient, with a
bonding energy that is still too low. This is expected
(vide supra), owing to the importance of the F)H+ ionic
structure that is rather poorly described without splitting
the doubly occupied orbitals. Splitting the active orbital
of this structure, as we did for the ionic structures of F2,
leads to a spectacular improvement in the bonding en-
ergy, by about 12 kcal/mol (SL-BOVB/6-31+G** entry
in Table 3). As in the F2 case, further improvement is
gained by delocalizing the p inactive orbitals to reach the
SD level that yields a bonding energy of 136.3 kcal/mol,
in very reasonable agreement with the experimental
value. A comparison of a full CI calculation by
Bauschlicher and Taylor [44] with the SD-BOVB level
using a common basis set is also displayed in Table 3.

By nature, the BOVB method describes properly the
dissociation process. As a test case, the dissociation
curve of the FH molecule was calculated at the highest
BOVB level and compared with a reference full CI
dissociation curve calculated by Bauschlicher et al. [45]

Table 2. Dissociation energies and optimized equilibrium bond
lengths for the F2 molecule calculated using different methods:
generalized valence bond (GVB); valence bond self-consistent field
(VBSCF); complete-active-space self-consistent field (CASSCF);
L-BOVB; split, localized BOVB (SL-BOVB); split, delocalized
BOVB (SD-BOVB); estimated full configuration interaction (CI)

Method Req

(Å)
De

(kcal/mol)
Reference

6-31+G* basis set
GVB 1.506 14.0 [15]
VBSCF 1.551 10.6 This work
CASSCF 1.495 16.4 [15]
L-BOVB 1.485 27.9 [15]
SL-BOVB 1.473 31.4 [15]
SD-BOVB 1.449 33.9 [15]

Estimated full CI < 33 [34]
Dunning–Huzinaga
basis seta

SD-BOVB 1.443 31.6 [15]
Estimated full CI 1.44 ± 0.005 28–31 [40, 41]
Experimental 1.412 38.3 [42]

a A modified Dunning–Huzinaga basis set used by Laidig et al. [40].
The normal (4,1) p contraction is extended to (3,1,1) and a set of six
d functions of exponent 1.58 is added
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with nearly the same basis set. The two curves, which
were compared in Ref. [15], were found to be practically
indistinguishable within an error margin of 0.8 kcal/mol,
showing the ability of the BOVB method to describe the
bonding interaction equally well at any interatomic
distance from equilibrium all the way to infinite sepa-
ration [15].

4.3 First-row transition-metal hydride cations

Bonds that involve transition metals are difficult to
handle computationally, owing to two factors: the
reshuffle of electronic configurations that accompanies
the dissociation and the presence of a large number of
inactive electrons that exert a great influence on the
bonding electrons. In this context, previous theoretical
studies of transition-metal hydride cations (TMH+)
showed that accurate predictions of bond dissociation
energies require extended wave functions, which account
for both static and dynamic electron correlation effects
[46, 47]. Schilling et al. [46] showed that the GVB
function by itself is unable to provide quantitative
accuracy, but it predicts correct trends and elucidates the
bonding patterns in first-row TMH+. The factors which
determine the bonding patterns [47] are the promotion
energy of the metal cation from the 3dn+1 state to the
bond-forming 4s13dn state, the loss of exchange in the
4s13dn state following bond formation, and the ground-
state symmetry determined by the electrostatic repulsion
between the d electrons. It is apparent therefore that VB
theory is capable of providing very useful insight into
bonding because it involves a compact, easily interpret-
able wave function. Further insight can be gained by
employing the BOVB method that uses explicit covalent
and ionic structures and can provide bonding patterns
in terms of covalency, covalent–ionic resonance energy,
and orbital relaxation of the 3dn and 3s23p6 shell
electrons. Can the BOVB wave function, despite its
extreme simplicity, still provide reasonable bonding
energies in such difficult cases?

To answer this question, Galbraith et al. [48] used the
BOVB method to study the bond energies of TMH+

species (TM=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn).
The basis set involved a relativistic effective core poten-
tial for the 1s22s22p6 core and a triple-f (8s,7p,6d//
6s,5p,3d) basis for the 3s, 3p, 3d, and 4s shells of the
metal, augmented with an f-type polarization function.
For hydrogen, the triple-f (5s//3s) basis of Dunning was
augmented with a p-type polarization function. At the
dissociation limit, the BOVB wave function correlates
with the restricted open-shell Hartree–Fock (ROHF)
states of TM+ and H. This level treats poorly the atomic
states and especially the 3dn+1state. To correct for
this non-VB-related deficiency, Galbraith et al. [48] used
the technique recommended by Schilling et al. [46],
Ohanessian and Goddard [47], and Petterson et al. [49]
of shifting the energies of the TM+ fragment using
experimental data. Thus, the TMH+ species are first
dissociated into the atomic state most closely resembling
their situation in the molecule (i.e., the 4s13dn state for
TM+), and whenever necessary, the experimental atomic
state splitting is used to correct the energy of the TM+

fragment to the corresponding atomic ground state.
The bond dissociation energies, calculated at the

various computational levels, are displayed in Table 4
and are compared with experimental values. The VBSCF
results are seen to be slightly better than the GVB results.
Both results qualitatively reproduce the characteristic
zigzag pattern of the experimental trends across the first
transition metal row; however these two sets of bond
energies are systematically too low, by 10–20 and some-
times by more than 30 kcal/mol, thus projecting the
importance of dynamic correlation. Accordingly, a sig-
nificant improvement is found upon moving from GVB
or VBSCF to L-BOVB. The added flexibility of the
BOVB method is seen to bring the predicted bond dis-
sociation energies closer to the benchmark CCSD(T)
values and to experimental results. Thus, while the
VBSCF method (as well as the GVB or SC methods)
captures the essential nondynamic correlation effects due
to the bonding event, the BOVB method retains this
qualitative picture, but adds the dynamic relaxation of all
the electrons in response to bond pairing.

Still, the BOVB bonding energy for CuH+ remains
too small, by about 10 kcal/mol, an unusually large
error for this method. However, CuH+ is a particularly
difficult case as can be judged by the VBSCF and GVB

Table 4. Bond dissociation energies (kcal/mol) of TMH+ species,
at the GVB, VBSCF, L-BOVB and CCSD(T) levels. The M–H
bond lengths are optimized at the VBSCF level

GVB VBSCF L-BOVB CCSD(T) Experimentala

ScH+ 47.4 46.4 57.5 55.2 57 ± 2
TiH+ 43.4 44.2 54.3 54.6 54 ± 3
VH+ 33.8 41.6 53.1 48.0 48 ± 2
CrH+ 8.9 9.5 26.1 37.3 32 ± 2
MnH+ 25.9 30.6 44.0 44.2 48 ± 3
FeH+ 31.2 36.0 53.9 51.9 50 ± 2
CoH+ 21.3 27.2 48.8 39.5 47 ± 2
NiH+ 9.7 16.1 40.3 39.3 40 ± 2
CuH+ )22.2 )16.3 11.4 24.4 22 ± 3
ZnH+ 46.5 46.2 55.7 56.0 55 ± 3

a Experimental bonding energies from Ref. [75]

Table 3. Dissociation energies and optimized equilibrium bond
lengths for the FH molecule

Method Req

(Å)

De

(kcal/mol)
Reference

6-31+G** basis set
GVB(1/2) 0.920 113.4 [15]
L-BOVB 0.918 121.4 [15]
SL-BOVB 0.911 133.5 [15]
SD-BOVB 0.906 136.3 [15]

Bauschlicher–Taylor
basis seta

SD-BOVB 0.906 136.5 [15]
Full CI b 0.921 136.3 [44]
Experimental 0.917 141.1 [42]

a A double-zeta plus polarization plus diffuse basis set used by
Bauschlicher and Taylor [44]
b The 2s orbitals are not included in the CI
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values, which are in error by 38 and 44 kcal/mol,
respectively. Another source of inaccuracy comes from
the use of VBSCF-optimized bond lengths, which were
found to be generally too long by an average of 0.09 Å
at this crude level [48]. Moreover, the BOVB calculation
was limited to the simplest L-BOVB. It would be inter-
esting to test the SD-BOVB level on these systems, with
proper geometry optimization, to make a more critical
evaluation of this unusual case.

4.4 Odd-electron bonds

Alongside electron-pair bonds, odd-electron bonds play
an important role in chemistry, and constitute therefore
a compulsory test case for any computational method.
Odd-electron bonds can be represented as two resonat-
ing Lewis structures that are mutually related by charge
transfer, as shown in Eq. 8 for two-center, one-electron
bonds and in Eqs. (9) and (10) for typical two-center,
three-electron bonds.

A � Bþ $ Aþ � B ð8Þ

A �þ : B $ A : � Bþ ð9Þ

A � : B� $ A :� � B ð10Þ
According to qualitative VB theory, such bonds owe

their strength to the resonance energy associated with
the mixing of the two limiting structures. In MO theory
the stability of these bonds is understood by inspection
of orbital interaction diagrams 14 and 15 (Scheme 6),
where r and r* are bonding and antibonding combi-
nations, respectively, of the active orbitals va and vb of
the fragments. Both diagrams display one net bonding
electron. These diagrams can be further considered to
question whether left–right electron correlation is still
important in these odd-electron bonds. In 14, the active
space reduces to a single electron, and this eliminates the
need for electron correlation within this space. On the
other hand, the active space of 15 involves three elec-
trons, and the only configuration that one might have
added to possibly improve the simple Hartree–Fock
wave function is r1r*2. This singly excited configura-
tion does not mix, however, with r2r*1, by virtue of
Brillouin’s theorem. It follows that the concept of left–
right correlation is meaningless in such systems, and that
the description of both one-electron and three-electron
bonds is already qualitatively correct at the Hartree–
Fock level, in contrast to two-electron bonds, where this
Coulomb correlation is important.

In view of the preceding conclusion, the failure of
Hartree–Fock ab initio calculations to reproduce three-
electron bonding energies might seem to be a paradox.
Clark [50] and Gill and Radom [51] carried out systematic
calculations on a series of cation radicals involving three-
electron bonds between atoms of the second and third
rows of the periodic table, and showed that the Hartree–
Fock error is always large, sometimes of the same order of
magnitude as the bonding energy itself. Focusing on the
three-electron case, the puzzling Hartree–Fock deficiency
can be analyzed by expanding the corresponding wave

function into its VB constituents, as we did in the two-
electron case. Taking the F�

2 case as an example, the
Hartree–Fock wave function YHF (3e) reads

WHF ð3eÞ ¼ . . .ui . . . r�rrrj j ; ð11Þ
where ui represent the inactive orbitals, and the active
orbitals r and r* are defined as in 14 and 15. Expanding
r and r* (dropping the normalization constants) leads to
Eq. (12):

WHFð3eÞ ¼ . . .ui . . . va�vvavbj j þ . . .ui . . . va�vvbvbj j : ð12Þ
Thus, the Hartree–Fock wave function is equivalent

to a two-configuration VB wave function. The same VB
structures, 16 and 17 (Scheme 7), were in fact used in
the original VB treatment of three-electron bonds by
Pauling [52].

Even though physically correct, the ROHF wave
function suffers from the same defect as the GVB or the
VBSCF wave function for two-electron bonds. Thus, the
active AOs are common for the two structures and are
not adapted to their instantaneous occupancies, while
the inactive orbitals are not adapted to the instantaneous
charge of the fragments. Once again, this defect can be
removed by use of the BOVB wave function, which
allows different orbitals for different structures, as in
Eq. (13):

WBOVBð3eÞ ¼ C1 . . . ui . . . La
�LLaRrj j

þ C2 . . . u0
i . . . Lr

�RRaRa

�
�

�
�;

La 6¼ Lr; Rr 6¼ Ra; ui 6¼ u0
i :

ð13Þ

Here the orbitals are defined in the same way as in
Eqs. (5), (6), and (7).

Let us now turn to actual BOVB computation of the
F�

2 anion, as an archetype of three-electron-bonded
radicals. As is the case for its neutral homologue, the
difluorine radical anion is a difficult test case for the
calculation of the bonding energy. At the Hartree–Fock
level, the bonding energy is about ±4 kcal/mol, de-
pending on whether the ROHF or the unrestricted Har-
tree–Fock method is used. The experimental bond energy
is 30 kcal/mol. In contrast, the second-order Møller–
Plesset (MP2) and fourth-order Møller–Plesset (MP4)
methods are successful, and this success emphasizes the
dynamic nature of electron correlation for this molecule.

The computed equilibrium distance and bonding en-
ergy of F�

2 are displayed in Table 5. To appreciate better
the sensitivity of active versus inactive orbitals to the BO

Scheme 6
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effect, the latter was introduced in steps. In the first step
no BOs are used (La=Lr, Ra=Rr, ui=u0

i). This VBSCF
calculation is nearly equivalent to the ROHF level. In
the second step, only active orbitals are included in the
breathing set (La „ Lr, Ra „ Rr), while in the next step
full breathing is permitted (La „ Lr, Ra „ Rr, ui „ u0

i).
The latter wave function, at the L-BOVB level, can be
represented as in 18 and 19 (Scheme 8).

The BO effect, restricted to the active orbitals that are
directly involved in the three-electron bond, already
improves the bonding energy by some 17 kcal/mol rel-
ative to the ROHF value (Table 5). Extension of the BO
effect to the inactive orbitals brings another 16 kcal/mol,
yielding a final bonding energy of 29.7 kcal/mol, in ex-
cellent agreement with the experimental bonding energy
of 30.2 kcal/mol [42].

The Hartree–Fock error is thus completely corrected
by the BO effect. On a ‘‘per orbital’’ basis, each active
AO contributes 8.6 kcal/mol to the overall BO stabili-
zation, while the inactive lone pairs have a lesser influ-
ence, about 2.8 kcal/mol each. It is seen that increasing

the level of theory from L- to D- or SD-BOVB does not
change much the calculated bonding energy, indicating
that the fully localized AOs are, right at the outset, well
adapted to the description of the three-electron interac-
tion, in contrast to the situation in two-electron bonds.

The performances of the various BOVB levels can be
compared to those of Møller–Plesset (MP) perturbation
theory, yet with some caution since the various MP or-
ders do not converge well. This is due to a rather large
spin contamination at the unrestricted MP2 level, which
leads to a wave function with an hS2i value of 0.78.
Keeping in mind that the breathing orbitals of F�

2 are
not very polarized [16], the bonding energy is not ex-
pected to be very basis set dependent, so the SD-BOVB
value of 28.0 kcal/mol is entirely reasonable relative to
the experimental value of 30.2 kcal/mol. The BOVB
calculated equilibrium bond lengths are rather long rel-
ative to the values calculated at the various MP levels
(no experimental value is available), and both sets of
values display significant variations from one level to the
other. This inaccuracy is, however, normal, owing to the
extreme flatness of the potential surface near the energy
minimum. Indeed, at the MP4 level the force constant
is only 0.55 mdyn/Å, which means that stretching the
bond by 0.02 Å away from equilibrium results in an
energy rise of only 0.03 kcal/mol.

A final point concerns the avoidance of symmetry-
breaking artefacts by BOVB as opposed to other
methods. Three-electron bonds, just like any electronic
system that must be described by more than one Lewis
structure, are subject to the symmetry-breaking artefact
with most computational methods based on MOs:
Hartree–Fock, MP2, or MP4, and even CCSD and
CCSD(T) [54, 55]. This symmetry-breaking is observed
beyond a critical interatomic distance, which may actu-
ally happen to be shorter than the equilibrium bond
length, and it is due to competition, during orbital
optimization, between the resonance effect and the BO
effect (called ‘‘size effect’’ by other authors [56, 57] in this
case). Assuming, for example, that the orbital optimi-
zation is performed at the Hartree–Fock level, the wave
function is subject to the so-called ‘‘symmetry dilemma’’:
that is, if the symmetry of the wave function is broken,
it converges to a solution like 18 alone, in which the
orbitals are adapted to their occupancy but where the
resonance is lost. On the other hand, if the symmetry is
maintained, the wave function converges to a solution of
the type 16 « 17; this benefits from the resonance en-
ergy, but the orbitals are optimized in a mean field, and
are consequently poorly adapted to their instantaneous
occupancy. In cases where the resonance is dominant,
the wave function displays the correct symmetry. How-
ever, as soon as the resonance becomes too weak to
overcome the BO effect, the wave function departs from
the molecular symmetry and leads to unphysical geom-
etries, frequencies, and energetics. This problem, which
is rather difficult to overcome with standard computa-
tional methods, vanishes at the BOVB level: as the wave
function involves both the size effect and the resonance
effect at any molecular geometry, the root cause for the
symmetry-breaking disappears. The BOVB method is,
by nature, free from the symmetry-breaking artefact.

Scheme 7

Table 5. Calculated equilibrium distances and dissociation energies
for the F�

2 radical anion, (6-31+G* basis set). The BOVB
calculations were performed with all valence orbitals being included
in the set of breathing orbitals (fully breathing option) unless
otherwise specified (entry 2)

Entry
method

Req

(Å)

De

(kcal/mol)
Reference

1 ROHF )4 [34]
2 L-BOVB

(active set
only)

1.954 13.3

3 L-BOVB 1.964 29.7 [16]
4 D-BOVB 1.954 30.1
5 SD-BOVB 1.975 28.0
7 MP2 1.916 26.2 [16]
8 PMP2 1.935 29.5
9 MP4 1.931 25.8 [53]

10 Experiment 30.2 [42]

Scheme 8
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4.5 General procedure for low-symmetry cases

Up to this point we have dealt with molecules with high
symmetry that helps the distinction between active and
inactive orbitals. Such symmetry is not always present in
the general case, and this poses a danger that during the
BOVB orbital optimization, some flipping will occur
between the sets of active and inactive orbitals.

The simplest level, L-BOVB, presents no particular
practical problem. Fast convergence is generally ob-
tained by using well-adapted guess orbitals, which can
be chosen as the Hartree–Fock orbitals of the isolated
fragments with the appropriate electronic charge. Thus,
the guess orbitals for the covalent structure are those of
the isolated radicals, while the orbitals of the isolated
anions and cations can be taken for the ionic structures.

Moving to the more accurate SL-BOVB level merely
requires checking that the orbital being split (in an ionic
structure) is indeed an active orbital and does not end up
belonging to the inactive space after the optimization
process. While this condition is generally met by
choosing an appropriate guess function in high-symme-
try cases (F2 or HF earlier), in the general case nothing
guarantees a priori that this exchange between the active
and inactive spaces will not take place, leading for
example to 20 instead of the correct structure 21 in the
case of H2N)NH2 (Scheme 9).

To circumvent this difficulty, a general procedure was
developed. After the L-BOVB step, the orbitals are ini-
tially subject to localization using any standard method,
then the active orbitals are split while the inactive ones
are kept frozen during the optimization process.3

Delocalization of the inactive orbitals (D-BOVB or
SD-BOVB) is important for getting accurate energetics.
Once again, it is important to make sure that the orbitals
that are delocalized are the inactive ones, while the active
set remains purely localized, which is the basic tenet of
the method. Otherwise, any number of artefactual so-
lutions might be found. To avoid a spurious exchange
between the active and inactive spaces during the orbital
optimization process, it is possible to start from an
L-BOVB or SL-BOVB wave function, then allowing
delocalization of the inactive orbitals while freezing, this
time, the active orbitals during the subsequent optimi-
zation process that leads to the D-BOVB or SD-BOVB
levels, respectively.

Some computational tests of the general method,
which were applied to highly symmetric molecules as well
(e.g., F2) for consistency, are displayed in Table 6. The
bonding energies, calculated after geometry optimization
at the MP2 level in the same basis set as the BOVB cal-
culations, are directly compared to experiment. It is seen
that the SD-BOVB computed bonding energies are all
close to the experimental values, despite the modest size
of the basis set, and this deserves some comment. First,
let us note that the bonding energy for F2 is slightly larger
than the value that is reported in Table 2. This is due in
part to the 6-31G* basis set, which yields slightly larger
bonding energies (with any computational method) than

basis sets involving diffuse orbitals. The other reason is
that with the general procedure, the 2s inactive orbitals of
each fluorine atom are also allowed to delocalize at the
SD level, whereas in Table 2 only the p inactive orbitals,
which alone could be distinguished from active ones by a
symmetry criterion, were allowed to delocalize. As a re-
sult, the bonding energies of F2 and the other molecules
displayed in Table 2 are consistently closer to experiment
than to the expected full CI estimation in the same basis
set, and this emphasizes the systematic tendency of the
SD-BOVB level, which can be understood by considering
the nondynamic correlation of the inactive electrons.
Normally, these electrons are left uncorrelated in the
molecule as well as in the dissociated fragments or in any
conformation of a molecular system throughout a po-
tential surface; however, since the inactive orbitals are
somewhat different in the HL and ionic VB structures,
it is impossible to avoid the fact that such a difference
in a multistructure wave function will bring in some
nondynamic correlation of the inactive electrons. This
is a rather fortunate systematic error, since generally
the basis set that is used is far from complete and the
slight BOVB overbinding compensates for the basis set
deficiency.

4.6 Summary of the computational tests

The generally good performance demonstrates that the
BOVB wave function, despite its very small size,
captures the essence of the chemical bond, be it of the
odd-electron or of the two-electron type, polar as well as
nonpolar. The complete neglect of Coulomb correlation

Table 6. Some BOVB-calculated bonding energies in double-zeta
polarized basis sets

BOVB
level

Basis
set

De

(theory)
De

(exp)a

H3C–H SD 6-31G** 105.7 110.3a

H3C–CH3 SD 6-31G* 94.7 96.8 ± 0.3b

H2N–NH2 SD 6-31G* 68.5 72.6 ± 2.0b

HO–OH SD 6-31G* 50.8 54.6c

F–F SD 6-31G* 36.2 38.3

a See Ref. [61]
b Ref. [76]
b Experimental D0 cited in Ref. [77]
c Zero-point-energy (ZPE) correction from experimental IR fre-
quencies found in Ref. [78]
d Ref. [42]

Scheme 9

3This requires prior orthogonalization of the orbitals within each
fragment
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within the inactive space has no significant consequences
for the relative energies. This in turn means that the
inactive electrons require dynamic correlation, associat-
ed with the fact that their orbitals undergo changes
in size, polarization or hybridization. However, these
electrons have some nearly constant Coulomb correla-
tion energy. In fact, just the bare minimum electron
correlation is taken into account since the method
becomes equivalent to a Hartree–Fock calculation of the
separated fragments at the dissociation limit. Thus, the
method calculates only the differential electron correla-
tion, which involves the left–right electron correlation of
the active electrons, and the dynamic correlation asso-
ciated with the formation of the bonds. Since the latter
term is nascent from the instantaneous adaptation of the
orbitals to the charge fluctuation of the active electrons,
dynamic correlation effects are particularly important
in three-electron bonds, because in such systems
the stabilizing interaction originates only in the charge
fluctuation between the two VB structures.

While all BOVB levels provide nearly equally good
bonding energies for the three-electron bonds, the same
does not hold true for two-electron bonds, which often
require the best levels for an accurate description.
Splitting the active orbitals in the ionic structures
is important when the bond is polar. Moreover, the
interatomic interactions between inactive orbitals are
important in two-electron bonds, owing to their short
equilibrium bond lengths. Such interactions are ade-
quately taken into account by delocalizing the inactive
orbitals.

Finally, a few remarks are in order concerning the
nondynamic correlation of the inactive electrons. As
already pointed out, a small part of this correlation is
taken into account in the molecule but not in the sepa-
rated fragments, and this systematic artefact has the
effect of deepening the potential well, thus compensating
for the small size of the basis sets that are usually used.
Now one may wonder if the use of large basis sets would
lead to BOVB bonding energies which would be signif-
icantly larger than experimental ones. Our experience
shows that in all the examples we have tested this is not
the case. The main effect of using a large basis set in
standard MO ab initio calculations is that it permits
angular correlation to be taken into account. This type
of electron correlation is associated with double elec-
tronic excitations towards high-rank polarization orbi-
tals, and such excitations are not normally present in a
compact BOVB wave function as defined earlier. It fol-
lows that using large basis sets in the BOVB framework
is of course possible, but should not lead to overly large
bonding energies.

However, some cases may be imagined in which this
spurious correlation of the inactive electron would
replace the BO effect of the active electrons, leading to
nonsensical bond energies. This might happen, for ex-
ample, if the active orbitals were allowed to delocalize
freely as in the GVB method. The outcome might be that
the active orbitals are all the same in the HL and ionic
structures, being of CF type, thus representing a tripli-
cate active system of GVB type. On the other hand, the
degree of freedom of the BOVB wave function would be

used to make the inactive orbitals very different from
each other in the three structures, so the resulting wave
function would display some correlated inactive elec-
trons. This would bring an additional correlation effect
that stabilizes only the molecule but not the fragments
because, at the asymptotic geometry, the HL structure is
the only VB configuration that remains. This stresses the
importance of keeping the active orbitals as strictly lo-
calized on their respective atom or fragment. A BOVB
calculation would become meaningless if the active
orbitals were freely allowed to delocalize. Other caveats
were discussed in the literature [48].

5 Diabatic states

One of the most valuable features of theoretical methods
based on classical VB structures is their ability to
calculate the energy of a diabatic state. For a recent
method of generating diabatic and adiabatic states using
VB-type concept within molecular mechanical formula-
tion see Ref. [58]. For practical applications, some
diabatic bond energy curves of chemical interest can
be, for example, the separate dissociation energy curves
of the ionic and covalent components of a bond, or the
energy curves of the effective VB structures of a chemical
reaction which are traced individually along a reaction
coordinate. Such diabatic curves are plotted in the curve-
crossing VB diagrams which are used to predict and
interpret reaction barriers [5, 6]. Diabatic states have
also some applications related to the concepts of organic
chemistry, like resonance energy.

5.1 Definition

While the definition of an adiabatic state is straightfor-
ward, as an eigenfunction of the Hamiltonian within the
complete set of VB structures, the concept of diabatic
state is less clear-cut and accepts different definitions.
Strictly speaking, a basis of diabatic states (J, J¢...)
should be such that Eq. (14) is satisfied for any
variation, ¶Q of the geometrical coordinates.

h#jo=oQj#0i ¼ 0 ð14Þ
However this condition is impossible to fulfill in the

general case with more than one geometrical degree of
freedom, so one has to search for a compromise in the
form of a function whose physical meaning remains
as constant as possible along a reaction coordinate.
Clearly, a single VB structure that keeps the same
bonding scheme irrespective of the geometry of the
system is the choice definition for a general diabatic state
[59]. For example, if we consider the A–B molecule in the
BOVB framework, the ground state (made of three VB
structures) will be adiabatic, while the three VB struc-
tures, A–B, A+B) and A)B+, will be the diabatic states.
Note, however, that a given diabatic state can generally
correspond to a mixture of VB structures representing a
given Lewis bond. For instance, in the SN2 reaction
(Eq. 4), one diabatic state could be the bonding scheme
of the reactants, Cl)+H3C-F, while the other would
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represent the products, Cl)CH3+F). In this case, each
diabatic state would be made of three VB structures, 3,
5, 6 and 4, 5, 7, corresponding to the covalent and two
ionic components of the carbon–halogen bond. Such
diabatic states constitute the crossing curves of the VB
correlation diagrams of Shaik and Pross [5, 6].

5.2 Practical calculations

Having defined a diabatic state as a unique VB structure,
or more generally as a linear combination of a subset of
VB structures, in the next step one has to specify the
orbitals needed to construct the VB structure(s) of this
diabatic state. An initial possibility is to keep for the
diabatic state the same orbitals that optimize the
adiabatic state, something that has the advantage of
simplicity. In practice, this can be achieved as follows.
Once the orbitals have been determined at the end of the
BOVB orbital optimization process, the Hamiltonian
matrix is constructed in the space of the VB structures
and the adiabatic energies are calculated by diagonal-
ization of the Hamiltonian matrix. The energies of the
diabatic states are just the respective diagonal matrix
elements.

A problem with this diabatization procedure is that it
does not guarantee the best possible orbitals for the di-
abatic states. Indeed, the BOVB orbitals are optimized
so as to minimize the energy of the multistructure
ground state and are therefore the best compromise
between the need to lower the energies of the individual
VB structures and to maximize the resonance energy
between these VB structures. This latter requirement
implies that the final orbitals are not the best possible
orbitals to minimize each of the individual VB structures
taken separately. It follows that the diabatic states
calculated in this way may appear surprisingly high in
energy. For instance, the purely covalent H3C–Cl bond
appears to be repulsive, if calculated this way, which is
unreasonable.

An alternative approach, which we recommend,
consists of optimizing each diabatic state separately, in
an independent calculation. As a result, the resulting
orbitals of the diabatic states are different from those of
the adiabatic states, and each diabatic state possesses its
best possible set of orbitals. The diabatic energies are
obviously lower compared with those obtained by the
previous method. Using again the H3C–Cl bond as an
example, this second procedure now yields an energy
profile for the purely covalent structure, with a bonding
energy of 34 kcal/mol, in agreement with common sense
as opposed to the repulsive covalent interaction obtained
in the first procedure. We therefore believe that the
separate calculation of the diabatic states yields the best
possible results in terms of chemical interpretation. It
leads to variational adiabatic and diabatic states.

It might be argued that the diabatic states, calculated
separately as we recommend, are subject to basis set
dependency. Thus, in principle, in the limit of an infinite
basis set, there would be so many and such diverse po-
larization functions that the optimized orbitals could not
be considered anymore to be localized, so the diabatic

state would converge to the ground state rather than to a
specific VB structure. However, in practice, a few tests
showed that as long as standard basis sets are used such
basis set dependency remains marginal. As an example,
adding a set of diffuse functions to the 6-311G* basis
set was found in one of our applications to change the
energy of the diabatic state by only 0.1–0.2 kcal/mol
relative to the ground state [19].

5.3 Resonance energies

Many molecules are represented as a set of resonating
structures. For example, the ground state of formamide
is the optimized mixture of the VB structures 22 and 23
(Scheme 10). The resonance energy, which is responsible
for the rotational barrier, is the energy difference
between the major VB structure 22 and the ground state.

Thus, the resonance energy characterizes the insuffi-
ciency of structure 22 to represent the ground state. It is
clear, therefore, that this concept is best quantified by
comparing the energy of the optimized ground state
with that of the best possible wave function for 22, and
this is meaningful only if the orbitals of the diabatic
state that represents structure 22 are optimized for this
specific state alone, as recommended earlier. Accord-
ingly, the method for calculating resonance energies in
the BOVB framework consists of separate optimizations
of the ground state and of the major VB structure (the
one that has the largest weight in the wave function).
The resonance energy is the difference between the
variational energies of the full state and the reference
VB structure. In this manner the resonance energy itself
is variational. Tests of these variational resonance
energies show that they reproduce experimentally
determined values, for example, for benzene and cyclo-
butadiene [60, 61].

6 Some applications of the BOVB method

Some applications of the BOVB method to effective
chemical problems have already been made by various
authors. Langenberg and Rutink [20] used the BOVB
method as a means to solve the symmetry-breaking
artefact in the potential-energy surface of the glyoxal
cation. This property of the method was also exploited
by Humbel et al. [21] in the investigation of the H2O2

)

potential surface. Basch et al. [22] applied the method to
study the SiH3–F bond and to calculate the covalent
versus ionic dissociation curves of CH3)Y molecules
(Y=F, OH, NH2, CH3, BH2, CN, NO) [23]. Calcula-

Scheme 10
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tions of diabatic states were performed by Lauvergnat
et al. to characterize the lone-pair bond-weakening effect
in the H–NH2, H–OH and H–F bonds [18]. The diabatic
states were also used in the generation of VB curve-
crossing diagrams for hydrogen-transfer reactions
between X groups (X=H, CH3, SiH3, GeH3, SnH3,
PbH3) [24], and for identity radical-exchange reactions
of the type H+XH¢fiHX+H¢ and X+HX¢fiXH+X¢
(X=F, Cl, Br). The covalent versus ionic nature of
homonuclear and heteronuclear p bonds was investigat-
ed [19], and a new type of bonding, in which the strength
of the bond is primarily due to an exceptional energy of
resonance between the covalent and ionic forms, was
discovered [19, 60, 61, 62]. Here, we focus on this latter
application, which is typical of the insight the BOVB
method can bring.

6.1 The nature of the C–Cl versus Si–Cl bonds

Bonding in first- versus higher-row atoms poses a number
of interesting problems, among which is the curious
reluctance of R3Si–X bonds to heterolyze [63, 64, 65, 66,
67] in solution, in comparison with the ease of heterolysis
in R3C–X compounds. So rare are the R3Si+X) species in
the condensed phase that a compound such as Ph3SiClO4

that appeared initially as an excellent candidate for an
ionic bond was found to be a covalent solid exhibiting a
Si–O bond [68]. In contrast, the carbon analog is definitely
ionic, Ph3C

+ClO4
) [69, 70]. It seems that Si has a very

strong affinity for covalent interactions, much stronger
indeed than carbon, and that it requires counterions such
as hexabromocarborane to approach, even then not
completely, an ion pair situation, R3Si+X) [71]. This
difference between bonding at silicon and carbon cannot
be explained by electronegativity considerations since
silicon is much more electropositive than carbon
and might as such be expected to be more prone to form
free cations. Such intriguing experimental facts raise

fundamental questions that require understanding, which
can only be gained through a detailed investigation of the
covalent and ionic interactions and their interplay in Si–X
versus C–X bonds. The BOVB method is suitable for this
purpose, and was used to study the model systems
H3Si)Cl and H3C)Cl [62, 72]. We mention this study in
some detail, since it demonstrates the insight that can be
gained by the use of diabatic state curves to solve a
chemical problem.

The adiabatic bond energies calculated at the SD-
BOVB level, in the 6-31G* basis set, are compared in
Table 7 to the experimental and G1 and G2 energies.
The underestimation of the BOVB-estimated bonding
energies relative to experiment is significant, 7.4 and
9.4 kcal/mol respectively for the C–Cl and Si–Cl bond,
but in the expected range in view of the small basis set
used in this semiquantitative study, much smaller than
the basis set used at the G2 level [73, 74].

The dissociation curves representing the ground
states, the purely covalent and lowest purely ionic curves
of the two molecules are displayed in Figs. 1 and 2, re-
spectively, as calculated at the SD-BOVB level. It is seen
that in both molecules the covalent structure is bonded
relative to the separate fragments by a significant
amount. This bonding energy is the covalent contribu-

Table 7. Bond energies (kcal/mol) for H3C–Cl and H3Si–Cl at
various levels

Species Experimenta SD-BOVBb G1c G2c

H3CCl 87.3 79.9 88.9 88.3
H3SiCl 110.7 101.7 111.9 110.7

a De obtained from experimental D0 values quoted in Ref. [70] and
corrected by a calculated DZPE from Ref. [74]
b Optimized geometric values [GVB(1/2)/6-31G*] are
RCCl=1.815 Å, RCH=1.078 Å, ff(HCCl)=108.1
, RSiCl=2.086 Å,
RSiH=1.468 Å, ff(HSiCl)=108.3

c G1 and G2 values from Refs. [73, 74]

Fig. 1. Dissociation energy curves for the
pure ionic (H3C

+Cl)) and the pure covalent
(H3C–Cl) structures, and the split, delocal-
ized breathing-orbital valence bond (SD-
BOVB) ground state for the H3C–Cl bond

268



tion that arises solely from the spin-pairing of the two
electrons, which are localized on their respective
fragments. Interestingly, these covalent interaction
energies are almost the same for both systems, 34 kcal/
mol for H3CCl and 37 kcal/mol for H3SiCl. On the
other hand, the optimal distance for the purely covalent
bond is, expectedly, longer in the Si–Cl than in the C–Cl
bond.

More surprising are the features of the ionic curves
for the two molecules. While the minimum of the
H3C

+Cl) curve is located at a bonding distance of
2.452 Å, that of H3Si+Cl) is found at a significantly
shorter distance, 2.159 Å. As such, the effective radius
of the H3Si+ cation is smaller than that of H3C

+, in the
opposite order to the sizes of the silicon and carbon
atoms. Moreover, the ionic potential well of H3Si+Cl)

is much deeper than that of H3C
+Cl), with an ionic

bonding energy of 139 versus 89 kcal/mol, relative to the
asymptotic values calculated at a separation of 10 Å
between the ionic fragments. These different features of
the H3Si+Cl) and H3C

+Cl) ion pairs can be under-
stood by considering the detailed net charges on both
cations, as calculated [62, 72] by means of a natural
bond orbital analysis. It appears that while the positive
charge in the CH3

+ cation is dispersed on all atoms, in
the silicenium cation it is concentrated on the silicon
atom. The calculated net charges amount to only 0.284
on carbon versus 1.464 on silicon in the two respective
cations, as calculated at the same geometries they pos-
sess in the R3M)Cl molecules [62, 72]. It is apparent,
therefore, that H3Si+Cl) will possess a much stronger
electrostatic interaction compared with H3C

+Cl); hence
the deeper potential-energy curve and the shorter
optimal distance.

While the covalent curve is the lowest of the two
diabatic curves in both molecules, the covalent–ionic
energy gap is much larger in H3C)Cl than in H3Si)Cl, in
the bonding regions, as expected from electronegativity

considerations. Nevertheless, the interaction between
covalent and ionic structures is very important in both
cases. The formation of the ground-state bond at each
point of the RM...Cl (M=C, Si) coordinate arises pri-
marily from the mixing of the covalent VB structure with
the lowest ionic structure, through an interaction matrix
element which is the classical resonance integral b,
defined over the bond hybrids. The resulting increase in
the bond energy, relative to the covalent curve, is the
covalent–ionic resonance energy.

Let us turn now our attention to the nature of the
M–Cl bond at its equilibrium geometry. The coefficients
of the covalent and ionic structures in the ground states
of H3SiCl and H3CCl are displayed in Table 8, along
with their calculated weights. At the SD-BOVB level, the
C–Cl bond is described as mostly covalent, with a weight
of about 62%, compared with a weight of 27% for the
lowest ionic structure, C+Cl), while the other ionic
structure, C)Cl+, is marginal. On the other hand, the
Si–Cl bond has rather similar covalent and ionic weights
(57% and 46%, respectively), in agreement with the
near degeneracy of the corresponding VB structures, at
equilibrium bonding distance. The second ionic VB
structure, Si)Cl+, is totally negligible, having a small
negative weight, which in the Chirgwin–Coulson defini-
tion is interpreted as close to zero.

Fig. 2. Dissociation energy curves for the
pure ionic (H3Si+Cl)) and the pure covalent
(H3Si–Cl) structures, and the SD-BOVB
ground state for the H3Si–Cl bond

Table 8. Weights and coefficients of covalent and ionic structures
for H3C–Cl and H3Si–Cl at the SD-BOVB level

Coefficients Weights

H3C–Cl 0.646 0.616
H3C

+Cl– 0.358 0.269
H3C

)Cl+ 0.190 0.115
H3Si–Cl 0.628 0.572
H3Si+Cl) 0.522 0.459
H3Si)Cl+ 0.075 )0.031
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As may be seen from Figs. 1 and 2 the resonance
energy is strikingly large, about 46 kcal/mol for CH3Cl
and about 66 kcal/mol for SiH3Cl. In fact, in both cases
the major bonding interaction that glues the two frag-
ments is the resonance energy, and for the Si–Cl bond
this contribution is truly dominant, being about 65% of
the total bond energy. The reason for this qualitative
difference between the C–Cl and Si–Cl bonds is the
energy gap between the covalent and the major ionic
structure MH3

+Cl) that is significant in CH3Cl but
extremely small in SiH3Cl. This difference is the
consequence of three additive effects:

1. The lower ionization energy of SiH•
3 relative to CH•

3

globally lowers the H3Si+Cl) curve compared to that
of H3C

+Cl).
2. The deeper ionic potential well of H3Si+Cl) relative to

H3C
+Cl) (vide supra).

3. The coincidence of the ionic and covalent minima, on
the dissociation coordinate, in the SiH3Cl case, in
contrast with the different ionic and covalent optimal
distances in CH3Cl.

How would these bonding features be modified in a
polar solvent? Having a larger dipole moment, the ionic
component of a covalent bond will be stabilized, by in-
teracting with solvent molecules, relative to the covalent
component [6, 13]. This differential stabilization is very
large when at a large distance between the fragments,
and gets smaller as the distance decreases. The conse-
quence is that the ionic curve becomes flat, it crosses the

covalent curve and defines an ionic dissociation limit.
Why does this mechanism, which is well accepted for the
C–X dissociation in R3C–X, seem to be inefficient in the
R3Si–X case? While this problem must await a proper
solvation treatment, the results have shed enough light
on the natures of the C–Cl and Si–Cl bonds to suggest
the working hypotheses depicted in Fig. 3.

Figure 3a shows the situation in R3C–X. This is a
typical scenario of an efficient heterolytic cleavage. The
ionic curve, Yion, retains its gas-phase minimum [13],
which now becomes the minimum for the tight ion pair.
At shorter distances the ionic structure rises in energy,
crosses the covalent structure, Ycov, and by avoided-
crossing leads to a transition state for the heterolysis.
In the R3Si–X case, the ionic curve which was already
close to the covalent one in the gas phase (see Fig. 2)
now descends below the covalent curve but remains
quite close since the solvation of R3Si+X) is not so
favorable. Indeed, the net dipole of the R3Si+X) ionic
structure should be quite small because the R3Si+ ca-
tion takes the form of a highly positive Si atom sur-
rounded by negatively charged alkyl groups [62], which
inhibits the solvation of a separated R3Si+X) ion pair
[62]. Thus, while the ionic structure becomes lower than
the covalent one, solvation is not expected to drasti-
cally lift the near-degeneracy of the covalent and ionic
structures in the vicinity of the equilibrium distance.
Consequently, the large resonance energy due to
covalent–ionic mixing will create a deep minimum for
the bond with a high barrier for heterolytic bond-
breaking, as shown in Fig. 3b. Thus, the strong
covalent–ionic resonance energy will glue the two
fragments. In such a 1:1 species, even though the
charge distribution in the Si–X bond may still appear
ionic, this ionicity will remain virtual. Thus, SiR3–X
prefers to form discrete molecular structures, each of
which is stabilized by covalent–ionic resonance over ion
pairs stabilized by electrostatic attraction.

7 Conclusion

Although the great majority of quantitative calculations
are done in the framework of MO theory, the language
of chemists has remained faithful to VB theory. As such,
the most commonly employed computational tool is not
fully commensurate with a significant number of funda-
mental chemical concepts. This has occasionally created
some confusion with respect to important paradigms of
chemistry, such as resonance energy, Lewis structures,
hybrid orbitals, mesomeric stuctures and so on. To take
only a few examples, the role of electronic delocalization
in aromaticity, the role of resonance in the rotational
barriers of the peptide bonds in a protein or in the
strength of carboxylic acids has long been debated,
mainly because of the inadequacy of MO methods to
relate faithfully to these VB-derived concepts.

Clearly, there has been a need for a computational
method that would speak the language of chemists while
being reasonably quantitative as far as geometries, force
constants and energetics, in general, are concerned. The
BOVB method is an endeavor to fill this gap by bringing

Fig. 3a,b. Schematic covalent (Ycov) and major ionic (Yion)
diabatic dissociation curves of an R3M–X species in a polar
solvent. The ground-state dissociation curve (bold line) results from
the mixing of the diabatic curves Ycov and Yion. a The R3C–Cl case.
b The R3Si–Cl case
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together the qualities of lucidity, compactness and rea-
sonable accuracy. To achieve this accuracy, it is essential
to take care of the differential electron-correlation types
associated with the bonds that are created or broken
along the reaction coordinate. A unique feature of the
BOVB method is that it considers not only the Coulomb
but also the dynamic part of this differential correlation,
which can be very significant in some cases. The com-
putational tests that have been performed in a variety of
difficult cases show that the description is consistent and
reasonably accurate, despite the extreme compactness of
the wave functions.

The pictorial nature of BOVB allows the hierarchy of
electron correlation effect to be charted and to be asso-
ciated with the fundamental properties of the electron.
Thus, the electron is a particle with a classical charge
(e)), a quantal particle with a spin, and is also a wave.
Each of these properties leads to a characteristic corre-
lation. Hartree–Fock theory takes care of the spin cor-
relation by enabling electrons with identical spins to
avoid one another (‘‘Fermi holes’’). However, Hartree–
Fock theory neglects completely all other correlation
effects. Correlated wave functions such as CASSCF,
VBSCF, etc., take care of the Coulomb correlation due
to the classical charge of the electron. Higher levels, for
example, CASPT2, CCSD(T), VBCI, BOVB, etc., are
required to account for the dynamic correlation, which is
associated with the wave quality of the electrons and the
ability of the probability density to respond instanta-
neously to local fields. VB theory (e.g., VBSCF, BOVB)
shows very lucidly the nature of Coulomb correlation by
preferring VB structures that keep away the electrons.
BOVB shows most vividly that the dynamic correlation
is the adaptation of the orbitals to the individual charges
of the VB structures rather than to their mean field.
We therefore contend that BOVB has a fundamental
conceptual value, in addition to its accuracy.

The BOVB method is not designed, of course, to
compete with the standard ab initio methods, but has its
specific domain. The method serves as an interface be-
tween the quantitative rigor of today’s capabilities and the
traditional qualitative matrix of concepts of chemistry. As
such, it has been mainly devised as a tool for computing
diabatic states, with applications to chemical dynamics,
chemical reactivity with the VB correlation diagrams,
photochemistry, resonance concepts in organic chemis-
try, reaction mechanisms, and more generally all cases
where a VB reading of the wave function or the properties
of one particular VB structure are desirable in order to
understand better the nature of an electronic state.
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